Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

You-Quan Zhu, Hai-Bin Song, Chang-Sheng Yao, Ying Gao, Fang-Zhong Hu, Xiao-Mao Zou and Hua-Zheng Yang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
youquan_zhu@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.091$
Data-to-parameter ratio $=9.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(a-Hydroxy-2-methoxylbenzylidene)-1-isopropylpyrrolidine-2,4-dione

The title compound, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$, is a potent new herbicide containing the pyrrolidine-2,4-dione ring system. In the crystalline state, the molecular skeleton contains one enol grouping, which is intramolecularly hydrogen bonded to a neighboring keto O atom.

Comment

Many compounds containing the 3-acylpyrrolidine-2,4-dione moiety are novel heterocyclic compounds with antibiotic activity; these include tenuazonic acid (Stickings, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Rinehart et al., 1971), malonomycin (Bann et al., 1978), α-cyclopiazonic acid (Stickings, 1959; van Rooyen, 1992) and β-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid grouping as a tricarbonylmethane fragment, and the hydrogen chemical shift of the enol hydroxy group is ~ 11 p.p.m. (Wu et al., 2002). Most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their two kinds of bioactivity (Zhu et al., 2004). Hitherto, we have synthesized a series of 3-(un)substituted benzoyl-1-alkyl-pyrrolidine-2,4-dione compounds, some of which have high herbicidal activity. The structure reported here, ($1 b$), helps us to investigate the relationship between structure and herbicidal activity.

The analysis of crystals grown from a solution of 3-(2-methoxybenzoyl)-1-isopropylpyrrolidine-2,4-dione, (1a), showed that we had obtained crystals of the related tautomeric form, viz. 1-iso-propyl-3-(α-hydroxy-2-methoxybenzylidene)-pyrrolidine-2,4-dione, $(1 b)$. The molecular structure of $(1 b)$ is shown in Fig. 1. Atom H2, involved in intramolecular hydrogen bonding between O 2 and O 4 , was assigned to O 2 rather than to O 4 , on the basis of the bond lengths. The $\mathrm{C} 11-$ O4 distance is 1.252 (3) \AA, which is longer than the normal carbonyl bond length ($\mathrm{C} 9=\mathrm{O} 3$) of $1.210(5) \AA$. In contrast, the $\mathrm{C} 7-\mathrm{O} 2$ distance, 1.331 (3) \AA, is intermediate between the normal carbonyl $\mathrm{C}=\mathrm{O}$ bond and the $\mathrm{C}-\mathrm{O}$ single bond length (Allen et al., 1987). A similar situation has been reported for 3-(1-hydroxyethylidene)-1-phenylpyrrolidine-2,4-dione (Ellis \& Spek, 2001). The crystal structure of (1b) also involves two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (Fig. 2 and Table 2).

Received 1 March 2004 Accepted 15 March 2004 Online 24 March 2004

Figure 1
A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The intramolecular hydrogen bond is indicated by a dashed line.

Figure 2
A packing diagram, showing the intra- and intermolecular hydrogen bonds as dashed lines.

Experimental

The title compound was obtained according to a reported procedure (Matsuo et al., 1980). Colorless single crystals were obtained by recrystallization of 1-isopropyl-3-(α-hydroxy-2-methoxylbenzyl-idene)pyrrolidine-2,4-dione from petroleum ether and ethyl acetate.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$
$M_{r}=275.30$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.981(2) \AA$
$b=13.720(4) \AA$
$c=14.863(5) \AA$
$V=1423.5(8) \AA^{3}$
$Z=4$
$D_{x}=1.285 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 939 reflections
$\theta=2.7-23.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.22 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	1701 independent reflections
\quad diffractometer	1300 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.031$
Absorption correction: multi-scan	$\theta_{\max }=26.4^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-8 \rightarrow 8$
$T_{\min }=0.965, T_{\max }=0.985$	$k=-17 \rightarrow 14$
8260 measured reflections	$l=-18 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0464 P)^{2} \\
&+0.0951 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.11 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.091$
$S=1.07$
1701 reflections
185 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C1	1.356 (3)	N1-C12	1.460 (3)
O1-C15	1.429 (3)	C6-C7	1.472 (3)
O2-C7	1.331 (3)	C7-C8	1.363 (3)
O3-C9	1.210 (3)	C8-C9	1.453 (3)
O4-C11	1.252 (3)	C8-C11	1.454 (3)
N1-C11	1.331 (3)	C9-C10	1.522 (4)
N1-C10	1.455 (3)		
C1-O1-C15	118.1 (2)	O3-C9-C8	130.9 (2)
C11-N1-C10	111.63 (18)	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 10$	123.4 (2)
C11-N1-C12	124.8 (2)	C8-C9-C10	105.7 (2)
C10-N1-C12	123.5 (2)	$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 9$	104.78 (19)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	119.5 (2)	O4-C11-N1	125.3 (2)
O2-C7-C6	113.0 (2)	$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 8$	124.4 (2)
C8-C7-C6	127.5 (2)	N1-C11-C8	110.28 (18)
C7-C8-C9	131.4 (2)	N1-C12-C13	111.2 (2)
C7-C8-C11	120.8 (2)	N1-C12-C14	111.5 (2)
C9-C8-C11	107.6 (2)	C13-C12-C14	111.1 (3)
C5-C6-C7-O2	-50.5 (3)	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 11$	-1.9 (3)
C1-C6-C7-O2	127.5 (2)	$\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 3$	177.5 (3)
C5-C6-C7-C8	127.4 (3)	C7-C8-C9-C10	-175.7 (2)
C1-C6-C7-C8	-54.6 (3)	C12-N1-C10-C9	178.3 (2)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	172.5 (3)	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 1$	-178.5 (2)
C6-C7-C8-C9	-5.3 (4)		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4$	0.82	1.81	$2.555(3)$	150
$\mathrm{C} 15-\mathrm{H} 15 C \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.50	$3.192(3)$	129
$\mathrm{C}^{\mathrm{i}} 10-\mathrm{H} 10 A \cdots \mathrm{O}^{2}$	0.97	2.56	$3.271(3)$	130

Symmetry codes: (i) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.98 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O})$. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged, and the absolute configuration cannot be determined from the crystallographic experiment.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20172031) and the Doctor's Special Foundation of the High Education Ministry.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bann, J. L. van der, Barnick, J. W. F. K. \& Bickelhaupt, F. (1978). Tetrahedron, 34, 223-231.
Bruker (1999). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Ellis, D. D. \& Spek, A. L. (2001). Acta Cryst. C57, 433-434.
Holzapfel, C. W., Hutchison, R. D. \& Wilkins, D. C. (1970). Tetrahedron, 26, 5239-5246.
Matsuo, K., Kitaguchi, I., Takata, Y. \& Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494-2502.

Rinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. \& Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038-4039.

Rinehart, K. L., Mackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J. \& Branfman, A. R. (1971). J. Am. Chem. Soc. 93, 4943-4945.
Rooyen, P. H. van (1992). Acta Cryst. C48, 551-552.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELSXS97 and SHELXL97. University of Göttingen, Germany.
Stickings, C. E. (1959). Biochem. J. 72, 332-334.
Wu, C.-S., Huang, J.-L., Sun, Y.-S. \& Yang, D.-Y. (2002). J. Med. Chem. 45, 2222-2228.
Zhu, Y.-Q., Hu, F.-Z. \& Yang, H.-Z. (2004). Huaxue Tongbao. In the press. (In Chinese.)

